sábado, 20 de agosto de 2016

Moléculas en una Nebulosa Ofrecen Pistas Sobre el Surgimiento de la Vida


17.08.16.- Utilizando data del observatorio SOFIA de la NASA y de otros observatorios, un equipo de investigadores internacionales ha estudiado cómo una tipo particular de moléculas orgánicas, las materias primas para la vida, se podrían desarrollar en el espacio. Esta información podría ayudar a los científicos a comprender mejor cómo se pudo desarrollar la vida en la Tierra.
Bavo Croiset de la Universidad de Leiden en los Países Bajos y otros investigadores se centraron en un tipo de molécula llamada Hidrocarburo Aromático Policíclico (PAHs por sus siglas en inglés), que son moléculas planas que constan de átomos de carbono dispuestos en un patrón de panal, rodeadas de hidrógeno.
Los PAHs representan el 10% del carbono en el universo y se encuentran en la Tierra cuando se liberan mediante la combustión de material orgánico como carne, caña de azúcar, madera, etc. El equipo de Croiset determinó que cuando los PAHs en la nebulosa NGC 7023, también conocida como la nebulosa Iris, son golpeados por la radiación ultravioleta de la estrella central de la nebulosa, se convierten en moléculas más grandes y complejas. Los científicos plantean la hipótesis de  que el crecimiento de moléculas orgánicas complejas como PAH es uno de los pasos que conducen a al surgimiento de la vida.
Algunos modelos actuales predicen que la radiación de una estrella cercana recién nacida y masiva tendería a descomponer las grandes moléculas orgánicas en otras más pequeñas, en vez de construirlas. Para probar estos modelos, los investigadores querían estimar el tamaño de las moléculas en diferentes ubicaciones en relación con la estrella central.
El equipo de Croiset utilizó el observatorio SOFIA para observar la nebulosa NCG 7023 con dos instrumentos, el FLITECAM, una cámara de infrarrojo cercano y FORCAST, la cámara de infrarrojo medio. Los instrumentos de Sofía son sensibles a dos longitudes de onda que son producidas por estas moléculas particulares, que pueden ser utilizados para estimar su tamaño. El equipo analizó las imágenes de SOFIA en combinación con los datos previamente obtenidos por el observatorio espacial infrarrojo Spitzer, el telescopio espacial Hubble y el telescopio de Canadá-Francia-Hawaii en la Isla Grande de Hawaii.
El análisis indica que el tamaño de las molécula PAH en la nebulosa varía según su ubicación siguiendo un patrón claro. El tamaño promedio de las moléculas en el centro de la nebulosa, alrededor de la estrella luminosa, es más grande en la superficie de la nube en el borde externo de la cavidad.
El equipo concluyó que la variación del tamaño molecular se debe a que algunas de las moléculas más pequeñas son destruidas por el campo de radiación ultravioleta de la estrella, y las moléculas medianas que son irradiadas se combinan hasta formar moléculas más grandes. Los investigadores se vieron sorprendidos al darse cuenta que la radiación tenía como resultado el crecimiento y no la destrucción de la molécula.

La nebulosa NGC 7023, también conocida como la nebulosa Iris. Image Credit: NASA/DLR/SOFIA

sábado, 13 de agosto de 2016

¿Qué Hay Dentro de Ceres? Nuevos Hallazgos con Datos de la Gravedad



08.08.16.- En decenas de miles de fotos enviadas por la nave espacial Dawn de la NASA, el interior de Ceres no es visible. Pero los científicos tienen datos poderosos para estudiar la estructura interna de Ceres: el propio movimiento de Dawn.
Como la gravedad domina la órbita de Dawn, los científicos pueden medir variaciones de la gravedad de Ceres estudiando los cambios sutiles en el movimiento de la nave espacial. Utilizando datos de Dawn, los científicos han cartografiado las variaciones de la gravedad de Ceres por primera vez, en un estudio publicado en la revista Nature, que proporciona pistas sobre la estructura interna del planeta enano.
"Los datos nuevos sugieren que Ceres posee un interior débil, y que el agua y otros materiales ligeros se separaron parcialmente de la roca durante una fase de calentamiento al principio de su historia", dijo Ryan Park, autor del estudio en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California.

Este concepto artístico muestra un diagrama de cómo el interior de Ceres podría estar estructurado, según los datos sobre el campo gravitatorio del planeta enano tomados por la misión Dawn de NASA. Image Credit: NASA/JPL-Caltech

El campo de gravedad de Ceres se mide mediante el control de las señales de radio enviadas por Dawn, y luego recibidas en la Tierra, por la Red del Espacio Profundo de la NASA.
Ceres tiene una propiedad especial llamada "equilibrio hidrostático", que ha sido confirmada en este estudio.  Esto significa que el interior de Ceres es lo suficientemente débil para que su forma esté gobernada por el modo en que gira. Los científicos alcanzaron esta conclusión comparando el campo gravitatorio de Ceres con su forma. El equilibrio hidrostático de Ceres es una de las razones por la que los astrónomos lo clasificaron como planeta enano en 2006.
Los datos indican que Ceres está "diferenciado", lo que significa que tiene varias capas de composiciones diferentes a distintas profundidades, encontrándose la capa más densa en el centro. Los científicos también han averiguado, tal como esperaban, que Ceres es mucho menos denso que la Tierra, la Luna y el asteroide gigante Vesta (el objetivo anterior de Dawn) y otros cuerpos rocosos de nuestro Sistema Solar. Además, se ha sospechado durante mucho tiempo que Ceres contiene materiales de baja densidad como hielo de agua, que el estudio muestra separado del material rocoso y que asciende a la capa más externa junto con otros materiales ligeros.
"Hemos descubierto que las divisiones entre las diferentes capas son menos pronunciadas dentro de Ceres que en la Luna y otros planetas en nuestro sistema solar", dijo Park. "La Tierra, con su núcleo metálico, su manto semifluido y corteza exterior, tiene una estructura más claramente definida que Ceres".
Los científicos también descubrieron que las áreas de gran elevación en Ceres desplazan la masa en el interior. Esto es análogo a cómo los barcos flotan en el agua: la cantidad de agua desplazada depende en la masa de la embarcación. Del mismo modo, los científicos concluyen que el manto débil de Ceres puede ser empujado a un lado por la masa de montañas y otras características topográficas en la capa más exterior como si las áreas de alta elevación ‘flotasen’ sobre el material. Este fenómeno ha sido observado en otros planetas, incluyendo la Tierra, pero este estudio es el primero en confirmarlo en Ceres.

sábado, 6 de agosto de 2016

El Hubble Observa una Estrella Muerta Hace Tiempo



014.08.16.- Esta imagen del Telescopio Espacial Hubble de la NASA/ESA ha captado los restos de una estrella muerta hace mucho tiempo. Estos mechones ondulantes de gas ionizado, llamados DEM L316A, se encuentran a unos 160.000 años luz de distancia dentro de uno de los vecinos galácticos más cercanos de la Vía Láctea - la Gran Nube de Magallanes (LMC).
La explosión que formó DEM L316A fue un ejemplo de una variedad especialmente enérgica y brillante de supernova conocida como tipo Ia. Se cree que este tipo de eventos de supernovas se producen cuando una estrella enana blanca roba más material de una compañera cercana del que puede asimilar, y se desequilibra. El resultado es una espectacular liberación de energía en forma de explosión brillante y violenta, que expulsa las capas exteriores de la estrella al espacio circundante a velocidades enormes. Como este gas expulsado viaja a través del material interestelar, se calienta y se ioniza, produciendo el débil resplandor que la Cámara de Campo Ancho 3 del Hubble captó en esta imagen.
La Gran Nube de Magallanes, LMC, orbita la Vía Láctea como una galaxia satélite, y es la cuarta más grande en nuestro grupo de galaxias, el Grupo Local. DEM L316A no es el único remanente de supernova en LMC; el Hubble observó otro caso en 2010 con SNR 0509, y en 2013 con SNR 0519.

Image credit: ESA (European Space Agency)/Hubble & NASA, Y. Chu

sábado, 9 de abril de 2016

Saturno Desde Otro Punto de Vista



04.04.16.- Las imágenes que la nave espacial Cassini capta de Saturno generalmente están orientadas de manera que Saturno aparece al norte, pero la nave espacial observa al planeta y sus amplios anillos desde todo tipo de ángulos. Aquí, un Saturno a media luz posa torcido mientras la pequeña luna Dione (1.123 kilómetros de diámetro) mira desde abajo a la izquierda. Y el terminador, la línea que separa la noche del día en Saturno, también está torcido, debido al acercamiento del planeta al solsticio de verano del norte. Como resultado, el polo norte del planeta se encuentra con luz del Sol durante todo el día de Saturno, tal y como sería en la Tierra durante el verano del hemisferio norte.



Esta imagen mira hacia el lado iluminado de los anillos desde unos 7 grados por encima del plano de los anillos. La imagen fue tomada con la cámara gran angular de Cassini el 19 de Febrero de 2016, usando un filtro espectral que preferentemente admite longitudes de onda de luz infrarroja centrada en 752 nanómetros.
El norte de Saturno está arriba y rotado 20 grados a la derecha. La imagen fue captada a una distancia aproximada de 1,9 millones de kilómetros de Saturno. La escala de la imagen es de 110 kilómetros por píxel.

sábado, 2 de abril de 2016

Nueva Herramienta de ADN/ARN Para Diagnosticar y Tratar Enfermedades

30.03.16.- Si la NASA va a enviar astronautas en misiones de años de duración, la agencia necesitará nuevas y mejores herramientas para controlar el estado de salud de los hombres y mujeres a lo largo del camino. Una empresa ha desarrollado una herramienta que podría hacer un diagnóstico completo a largas distancias en una realidad para la NASA - además de tener un gran potencial para el avance en la medicina en la Tierra.
Biotecnología  

En busca de una nueva forma de controlar los marcadores de salud como el recuento de glóbulos blancos y el colesterol, los investigadores descubrieron que las cadenas simples de ADN y ARN podrían plegarse en estructuras tridimensionales llamadas aptámeros que se unen a moléculas específicas, un proceso que se hace más rápido y más simple con el kit de AM Biotechnologies. Image Credit: National Institute of General Medical Sciences




                   
Actualmente, investigadores en la Tierra hacen un seguimiento de cosas como el recuento de glóbulos blancos y los niveles de colesterol y de cortisol, conocidos como "biomarcadores", con pruebas que utilizan proteínas especiales llamadas anticuerpos. Sin embargo, los anticuerpos tienen un corta vida útil, de tres a seis meses, y se pueden echar a perder por los altos niveles de radiación en el espacio, haciéndolos poco adecuados para este tipo de misiones.
La investigación de la década de los 90 sugirió una alternativa: cadenas simples de ADN y ARN que pueden plegarse en estructuras tridimensionales y, como anticuerpos, se unen a moléculas específicas. Estas estructuras, llamadas aptámeros, se pueden almacenar a temperatura ambiente sin degradarse y son inmunes a la radiación.
Hay, sin embargo, inconvenientes en la utilización de aptámeros en pruebas de diagnóstico. Por un lado, es un proceso que consume tiempo, complicando el proceso. Además, hasta hace poco los aptámeros no han sido tan buenos como los anticuerpos pegándose a las moléculas objetivo.
"No se unen suficientemente bien - no eran lo suficientemente específicos para sus objetivos", explica Mark Shumbera, presidente de AM Biotecnologías LLC, con sede en Houston. "Se necesita añadir ciertas modificaciones químicas a su ADN para que funcionen mejor".
Un proceso de aptámero estándar comienza colocando una molécula objetivo en una solución que sostiene cien trillones de secuencias aleatorias de ARN/ADN. Algunas secuencias se unen bien a la molécula objetivo, mientras que otras no - o se unirán débilmente. Las secuencias de éxito se separan a continuación y se copian a través de una reacción en cadena para crear otra, la solución más refinada, en un proceso que se repite hasta 15 veces.
Esta técnica, llamada Evolución Sistemática de Ligandos mediante Enriquecimiento. Exponencial, o SELEX, a menudo requiere muchas modificaciones químicas para adaptar mejor a los aptámeros para que se unan a las sustancias objetivo. Sin embargo, los científicos están limitados en la cantidad de modificaciones químicas que pueden hacer, en parte debido a que la reacción en cadena "no funciona de manera muy eficiente así", dice Shumbera. "Normalmente, la gente sólo utilizan una, y tal vez dos modificaciones a la vez."
En parte gracias al Small Business Innovation Research financiado por el Centro Espacial Johnson de la NASA, en 2007 AM Biotecnologías avanzó, el método más rápido simplificado para la creación de aptámeros que se adhieren fuertemente a la molécula objetivo. La compañía llama a estos aptámeros de nueva generación Aptámeros-X.
El nuevo método, más rápido utiliza un proceso patentado para sintetizar una colección de 10 mil millones de secuencias de ADN/ARN, incluyendo secuencias naturales y muy modificadas, en microesferas, que luego se utilizan para desarrollar los aptámeros con una afinidad para las moléculas particulares, tales como los biomarcadores en los que la NASA está interesada. El método basado en esferas elimina las limitaciones anteriores sobre las modificaciones químicas permitidas y simplifica el proceso de fabricación.
"Usted puede tener 50 modificaciones en una secuencia - no hay prácticamente ningún límite", dice Shumbera. "Este método permite que el ADN o ARN sea más diverso químicamente, lo que significa que hay una mejor oportunidad de crear una molécula con una particular alta afinidad y especificidad para el objetivo."
El proceso ya está en uso por la empresa, que también lo ha hecho disponible en el mercado por lo que cualquier persona puede tomar sus propios aptámeros. El kit es tan simple que cualquier persona con conocimientos básicos de laboratorio de bioquímica lo puede utilizar fácilmente, dice Shumbera. "Tenemos clientes universitarios, nuestros usuarios prototipo, estudiantes de primer año de universidad seleccionan Aptámeros-X utilizando nuestros kits. El proceso basado en cápsulas simplifica la selección de aptámeros enormemente ".

Además de ayudar a diagnosticar enfermedades, los Aptámeros-X también se podrían utilizar para atribuir un medicamento de quimioterapia a un tumor, evitando que otras partes del cuerpo reciban el tratamiento. "Podría ayudar a marcar el comienzo de la próxima gran revolución en cuanto a la forma de diagnosticar y tratar pacientes", dice Shumbera.
Uno de los medicamentos aptámero, Pegaptanib, ya ha conseguido la aprobación de la FDA, y Shumbera cree que las aplicaciones de diagnóstico no se quedan atrás. Él ve un futuro brillante para los aptámeros, especialmente para los usos de la NASA. La agencia está trabajando con otras empresas para crear una plataforma de hardware que pueda realizar el análisis en el espacio, lo que ayudará a diagnosticar y tratar las enfermedades posiblemente mientras que los astronautas se encuentren a miles o millones de millas de la Tierra.

sábado, 26 de marzo de 2016

Captan Por Primera Vez el Destello Temprano de la Explosión de una Estrella

22.03.16.- El brillante destello de la onda de choque de la explosión de una estrella ha sido capturada por primera vez en luz visible por el cazador de planetas de la NASA, el Telescopio Espacial Kepler.
Un equipo científico internacional dirigido por Peter Garnavich, profesor de astrofísica en la Universidad de Notre Dame, en Indiana, analizó la luz captada por Kepler cada 30 minutos durante un período de tres años a partir de 500 galaxias distantes, buscando unos 50 billones de estrellas. Estaban buscando signos de explosiones letales estelares masivas conocidas como supernovas.
En 2011, dos de estas estrellas masivas, llamadas súper-gigantes rojas, explotaron mientras Kepler las observaba. La primera gigante, KSN 2011a, tiene casi 300 veces el tamaño de nuestro sol y se encuentra a tan sólo 700 millones de años luz de la Tierra. La segunda, KSN 2011d, tiene aproximadamente 500 veces el tamaño de nuestro sol y se encuentra a unos 1,2 millones de años luz de distancia.
"Para poner en perspectiva su tamaño, la órbita de la Tierra alrededor de nuestro sol podría encajar cómodamente dentro de estas estrellas colosales", dijo Garnavich.
Ya se trate de un accidente aéreo, accidente de tráfico o supernova, la captura de imágenes de sucesos repentinos catastróficos es extremadamente difícil, pero tremendamente útil para comprender las causas. La mirada constante de Kepler permitió a los astrónomos ver, por fin, una onda de choque de supernova, cuando llegaba a la superficie de una estrella. El choque de ruptura en sí dura sólo unos 20 minutos, por lo que controlar el destello de energía ha sido un hito de investigación para los astrónomos.


Animation: The Early Flash of an Exploding Star, Caught by Kepler

VER EN YOUTUBE

Representación del destello de la onda de choque de la explosión de una estrella captada por Kepler. Credits: NASA Ames, STScI/G. Bacon

"Con el fin de ver algo que ocurre en escalas de tiempo de minutos, como una ruptura de choque, es deseable tener una cámara de vigilancia de forma continua el cielo", dijo Garnavich. "No se sabe cuando una supernova va a apagarse, y la vigilancia de Kepler nos permitió ser testigos de cómo comenzó la explosión."
Las supernovas como estas - conocidas como Tipo II - se desatan cuando el horno interno de una estrella agota su combustible nuclear, provocando que su núcleo se colapse por efecto de la gravedad.
Las dos supernovas encajaban bien con modelos matemáticos de explosiones de tipo II, reforzando las teorías existentes. Pero también revelaron lo que podría llegar a ser una variedad inesperada en los detalles individuales de estos eventos catastróficos estelares.
Si bien ambas explosiones producen un golpe enérgico similar, no se apreció ruptura de choque en la más pequeña de las supergigantes. Los científicos creen que es probable que se deba a que la estrella más pequeña estaba rodeada de gas, quizás lo suficiente como para enmascarar la onda de choque cuando llegó a la superficie de la estrella.
"Ese es el enigma de estos resultados," dijo Garnavich. "Nos fijamos en dos supernovas y vimos dos cosas diferentes. Esa es la máxima diversidad."
La comprensión de la física de estos hechos violentos permite a los científicos entender mejor cómo se han esparcido las semillas de la complejidad química y la vida misma en el espacio y el tiempo en la Vía Láctea.

sábado, 12 de marzo de 2016

El Derretimiento Oculto de Groenlandia

01.09.15.- Más del 90 por ciento del hielo de agua dulce de nuestro planeta está unido a las enormes láminas de hielo y a los glaciares de la Antártida y de Groenlandia. A medida que las temperaturas ascienden lentamente en todo el mundo, las aguas de deshielo que provienen de estos vastos depósitos de hielo colaboran para que se produzca un aumento en el nivel del mar. Por sí sola, Groenlandia podría hacer elevar 7 metros el nivel del mar si su hielo se derritiera por completo.
Y… se está derritiendo.
En agosto del año 2014, Eric Rignot, un glaciólogo que trabaja en la Universidad de California, Irvine, y en el Laboratorio de Propulsión a Chorro, JPL, de la NASA, dirigió un equipo que confeccionó mapas de acantilados de hielo ubicados en los bordes frontales de tres glaciares “emisarios” en Groenlandia. Los investigadores descubrieron cavidades que socavan la base de estos bordes protuberantes y que pueden desestabilizar el frente del hielo y aumentar los desprendimientos en los icebergs; un proceso llamado “parto”, por el cual partes del glaciar se rompen y flotan a la deriva.
“En Groenlandia, tenemos tasas de deshielo de unos pocos metros por día en los meses de verano”, dice Rignot.  ¿Qué está causando este “gran deshielo”?
El equipo de Rignot descubrió que los glaciares de Groenlandia que se dirigen al océano tienen bases más profundas debajo del nivel del mar que lo que se había medido anteriormente. Esto significa que las corrientes oceánicas cálidas en las profundidades pueden cubrir las caras de los glaciares y erosionarlos.
“En las regiones polares, las capas más altas del agua del océano son frías y dulces”, explica. “El agua fría es menos efectiva para derretir el hielo”.

 earth20150826.jpg
 Con el aumento de las temperaturas en todo el planeta,por sí sola, Groenlandia podría hacer elevar 7 metros el nivel del mar si su hielo se derritiera por completo. Image Credit: NASA/JPL/NordForsk

“El calor oceánico real se encuentra a una profundidad de 350-400 metros, y más abajo también. Esta agua cálida, salada, tiene origen subtropical y derrite el hielo mucho más rápidamente”.
El equipo de investigadores de Rignot está aportando información clave que resulta necesaria para documentar este efecto y predecir con precisión dónde y cuán rápidamente se notará en los glaciares. Día y noche, el equipo reunió y analizó mediciones relacionadas con la profundidad, la salinidad y la temperatura de las aguas de los canales y su intersección con el borde costero de la capa de hielo de Groenlandia.
Ellos descubrieron que algunos de los glaciares se balancean sobre enormes umbrales de barro que los protegen, por ahora. Pero otros glaciares están siendo seriamente socavados, sin que podamos verlos, debajo de la superficie, lo que significa que podrían colapsar y derretirse mucho más pronto.
No es fácil reunir estos datos. Por encima de las aguas turbulentas, del viento, de la lluvia y del clima frío, está el hielo mismo.
“Vinimos a estudiar glaciares que descargan en los fiordos. Y los fiordos están repletos de hielo. En algunos sitios, puede llegar a haber tanto hielo que el bote ni siquiera puede avanzar”.
Pero el hielo presenta una fascinación peculiar para Rignot. “Siempre me han interesado las regiones polares”, afirma. “Mis amigos quisieron viajar por el Caribe pero yo preferí hacerlo aquí, en estas aguas. No sé por qué. Simplemente me gustan estas regiones”.
¿Qué será lo próximo?
“OMG”, responde Rignot. Y no está usando el lenguaje de mensajes de texto. OMG quiere decir Ocean Melting Greenland, el nombre de un nuevo proyecto de cinco años de duración patrocinado por la NASA que llevará aún más lejos su investigación, hasta las cuatro esquinas de Groenlandia, en barco y en avión.
“Esperamos que los datos recolectados sean un punto de inflexión para el estudio de la interacción entre el hielo y el océano en Groenlandia”, dice Rignot. “Ayudará a quienes confeccionan los modelos para hacer mejores proyecciones del derretimiento de la capa de hielo de Groenlandia en el futuro”.