sábado, 9 de diciembre de 2017

3 de Diciembre, Llega la Primera de Tres Superlunas Consecutivas

01.12.17.- Marque en su calendario: una serie de tres superlunas aparecerán en la etapa celestial del 3 de Diciembre de 2017, el 1 de Enero de 2018 y el 31 de Enero de 2018.


Una superluna es una Luna que está llena cuando también está en o cerca de su punto más cercano en su órbita alrededor de la Tierra. Dado que la órbita de la Luna es elíptica, un lado (apogeo) está a unos 50,000 km más lejos de la Tierra que el otro (perigeo). Las lunas llenas de perigeo cercano parecen aproximadamente un 14% más grandes y un 30% más brillantes que las Lunas llenas que se encuentran cerca del apogeo en la órbita lunar.

"Las superlunas son una gran oportunidad para que las personas comiencen a mirar la Luna, ¡no solo una vez sino todas las oportunidades que tienen!", dijo Noah Petro, investigador del Centro de Vuelos Espacial Goddard de la NASA.


Es difícil para nuestros ojos distinguir estos pequeños cambios de tamaño cuando la Luna está alta en medio de la inmensidad del cielo nocturno. Pero cada vez que observas una Luna llena mientras se levanta o se pone, mientras está suspendida en el horizonte y resplandece a través de las siluetas de árboles o edificios, su tamaño aparente podría hacerte parecer el doble.


Si solo puedes observar un episodio de la trilogía de superlunas, observa la tercera. Será muy especial.


En primer lugar, la superluna del 31 de Enero contará con un eclipse lunar total, con una totalidad visible desde el oeste de América del Norte a través del Pacífico hasta el este de Asia. La órbita de la Luna alrededor de nuestro planeta está inclinada, por lo que normalmente cae por encima o por debajo de la sombra de la Tierra. Aproximadamente dos veces al año, una Luna llena se alinea perfectamente con la Tierra y el Sol de modo que la sombra de la Tierra bloquea totalmente la luz del Sol, que normalmente se reflejaría en la Luna.

"El eclipse lunar del 31 de Enero será visible durante la puesta de la luna. La gente en el este de los Estados Unidos, donde el eclipse será parcial, tendrá que levantarse por la mañana para verlo", señala 

Petro. "Pero es otra gran oportunidad de ver la Luna".


La Luna perderá su brillo y adquirirá un brillo misterioso, más débil de lo normal, de la escasa luz solar que atraviesa la atmósfera de la Tierra. A menudo emitidas en un tono rojizo debido a la forma en que la atmósfera dobla la luz, las Lunas totalmente eclipsadas a veces se llaman 'Lunas de sangre'.

"Estamos viendo todos los amaneceres y puestas de Sol de la Tierra en ese momento reflejados desde la superficie de la Luna", dice Sarah Noble, científica de programas en la sede de la NASA.


La superluna del 31 de Enero también será la segunda luna llena del mes. Algunas personas llaman a la segunda Luna llena en un mes una Luna Azul, que la convierte en una súper 'Luna Azul'. Las Lunas Azules suceden cada dos años y medio, en promedio. Con el eclipse total, será verdaderamente un espectáculo real: una luna 'súper azul de sangre'.



sábado, 2 de diciembre de 2017

Un Par Gigante de Agujeros Negros se Cuelan en una Imagen de Andrómeda

01.12.17.- Parece que ni siquiera los agujeros negros pueden resistirse a la tentación de entrometerse de forma inesperada en fotografías. El "objeto intruso" en cuestión aparece como un objeto de fondo en imágenes de la cercana galaxia de Andrómeda, revelado como la que podría ser la pareja más cercana entre sí de agujeros negros supermasivos jamás observada.
Los astrónomos hicieron este notable descubrimiento utilizando datos de rayos X del Observatorio de rayos X Chandra de la NASA y datos ópticos de los telescopios terrestres Gemini-North en Hawai y Palomar Transient Factory de Caltech en California.
Esta fuente inusual, llamada LGGS J004527.30 + 413254.3 (J0045 + 41 para abreviar), se vio en imágenes ópticas y de rayos X de Andrómeda, también conocida como M31. Hasta hace poco, los científicos pensaban que J0045 + 41 era un objeto dentro de M31, una gran galaxia espiral ubicada relativamente cerca a una distancia de aproximadamente 2,5 millones de años luz de la Tierra. Los nuevos datos, sin embargo, revelaron que J0045 + 41 estaba en realidad a una distancia mucho mayor, a unos 2.600 millones de años luz de la Tierra.
"Estábamos buscando un tipo especial de estrella en M31 y pensamos que habíamos encontrado una", dijo Trevor Dorn-Wallenstein de la Universidad de Washington en Seattle, WA, quien dirigió el artículo describiendo este descubrimiento. "¡Nos sorprendió y emocionó encontrar algo muy extraño!"
Aún más intrigante que la gran distancia de J0045 + 41 es que probablemente contenga un par de agujeros negros gigantes en órbita uno cerca del otro. La masa total estimada para estos dos agujeros negros supermasivos es aproximadamente doscientos millones de veces la masa de nuestro Sol.
Anteriormente, un equipo diferente de astrónomos había visto variaciones periódicas en la luz óptica de J0045 + 41 y, creyendo que era miembro de M31, lo clasificó como un par de estrellas que orbitaban una alrededor de la otra una vez cada 80 días.
La intensidad de la fuente de rayos X observada por el Chandra reveló que esta clasificación original era incorrecta. Más bien, J0045 + 41 tenía que ser un sistema binario en M31 que contenía una estrella de neutrones o un agujero negro que extraía material de un compañero, el tipo de sistema que Dorn-Wallenstein buscaba originalmente en M31, o un sistema mucho más masivo y distante que contiene al menos un agujero negro supermasivo de rápido crecimiento.
Sin embargo, un espectro del telescopio Gemini-Norte tomado por el equipo de la Universidad de Washington mostró que J0045 + 41 debe albergar al menos un agujero negro supermasivo y permitió a los investigadores estimar la distancia. El espectro también proporcionó evidencias posibles de que había un segundo agujero negro en J0045 + 41 y se movía a una velocidad diferente de la primera.
Luego, el equipo utilizó datos ópticos de Palomar Transient Factory para buscar variaciones periódicas en la luz de J0045 + 41. Encontraron varios períodos en J0045 + 41, incluidos unos en 80 y 320 días. La relación entre estos períodos coincide con lo predicho por el trabajo teórico sobre la dinámica de dos agujeros negros gigantes que se orbitan entre sí.
"Esta es la primera vez que se han encontrado pruebas tan sólidas para un par de agujeros negros gigantes que se orbitan", dijo la coautora Emily Levesque de la Universidad de Washington.
Los investigadores estiman que los dos supuestos agujeros negros se orbitan entre sí con una separación de solo unos cientos de veces la distancia entre la Tierra y el Sol. Esto corresponde a menos de una centésima parte de un año luz. En comparación, la estrella más cercana a nuestro Sol está a cuatro años luz de distancia.
Tal sistema podría formarse como consecuencia de la fusión, miles de millones de años antes, de dos galaxias que contenían un agujero negro supermasivo. En su actual separación cercana, los dos agujeros negros inevitablemente se dibujan más cerca, ya que emiten ondas gravitacionales.
"No podemos precisar exactamente la cantidad de masa que contiene cada uno de estos agujeros negros", dijo el coautor John Ruan, también de la Universidad de Washington. "Dependiendo de eso, creemos que este par colisionará y se fusionará en un agujero negro en tan solo 350 años o hasta en 360.000 años".
Si J0045 + 41 de hecho contiene dos agujeros negros que se orbitan estrechamente emitirá ondas gravitatorias, sin embargo, la señal no sería detectable con LIGO y Virgo. Estas instalaciones terrestres han detectado fusiones de agujeros negros de masa estelar que no pesan más de 60 soles y, muy recientemente, una entre dos estrellas de neutrones.
"Las fusiones de agujeros negros supermasivos ocurren en cámara lenta en comparación con los agujeros negros de masa estelar", dijo Dorn-Wallenstein. "Los cambios mucho más lentos en las ondas gravitacionales de un sistema como J0045 + 41 se pueden detectar mejor mediante un tipo diferente de instalación de ondas gravitacionales llamada Pulsar Timing Array".

Fuente de rayos X de J0045 + 41. Image Credit: NASA/ESA/Universidad de Washington

sábado, 25 de noviembre de 2017

El Primer Asteroide Interestelar no se Parece a Nada Visto Antes

22.11.17.- Por primera vez los astrónomos han estudiado un asteroide que ha entrado en el Sistema Solar desde el espacio interestelar. Observaciones llevadas a cabo con el VLT (Very Large Telescope) de ESO, en Chile, y con otros observatorios del mundo, muestran que este objeto único ha viajado por el espacio durante millones de años antes de su encuentro casual con nuestro sistema estelar. A diferencia de los objetos que suelen encontrarse en el Sistema Solar, este parece ser metálico o rocoso, muy alargado y de un color rojo oscuro. Los resultados aparecen en la revista Nature del 20 de noviembre de 2017.


El 19 de octubre de 2017, el telescopio Pan-STARRS 1, en Hawái, captó un débil punto de luz moviéndose a través del cielo. Al principio parecía un pequeño asteroide típico de rápido movimiento, pero observaciones llevadas a cabo durante los dos días posteriores, permitieron calcular su órbita con bastante precisión, lo que reveló, sin ninguna duda, que este cuerpo no se originó dentro del Sistema Solar, como todos los demás asteroides o cometas observados hasta ahora, sino que venía del espacio interestelar. Aunque originalmente fue clasificado como cometa, observaciones de ESO y de otras instalaciones no revelaron signos de actividad cometaria tras su paso más cercano al Sol, en septiembre de 2017. El objeto ha sido reclasificado como un asteroide interestelar y nombrado 1I/2017 U1 ('Oumuamua).

“Tuvimos que actuar con rapidez”, explica Olivier Hainaut, miembro del equipo de ESO, en Garching (Alemania). “'Oumuamua había pasado ya su punto más cercano al Sol y se dirigía hacia el espacio interestelar”.


Dado que puede hacerlo con mucha más precisión que telescopios más pequeños, el telescopio VLT (Very Large Telescope) de ESO entró inmediatamente en acción para medir la órbita, el brillo y el color del objeto. La rapidez era vital, ya que 'Oumuamua está desapareciendo rápidamente, pues se aleja del Sol y ha pasado la órbita de la Tierra, en su camino fuera del Sistema Solar. Pero había más sorpresas por venir.


Combinando las imágenes del instrumento FORS del VLT (con cuatro filtros diferentes) con las de otros grandes telescopios, el equipo de astrónomos dirigido por Karen Meech (Instituto de Astronomía, Hawái, EE.UU.) descubrió que 'Oumuamua varía muchísimo su brillo, en un factor de diez, a medida que gira sobre su eje cada 7,3 horas.


Karen Meech lo explica: “Esta gran variación en brillo, poco común, significa que el objeto es muy alargado: su longitud es unas diez veces mayor que su anchura, con una forma compleja y enrevesada. También descubrimos que tiene un color rojo oscuro, similar a los objetos del Sistema Solar exterior, y confirmamos que es totalmente inerte, sin el menor atisbo de polvo alrededor de él”.


Estas propiedades sugieren que 'Oumuamua es denso, posiblemente rocosos o con gran contenido  metálico, sin cantidades significativas de hielo ni agua, y que su superficie ahora es oscura y está enrojecida debido a los efectos de la irradiación de rayos cósmicos durante millones de años. Se estima que mide al menos 400 metros de largo.


Cálculos orbitales preliminares sugieren que el objeto viene aproximadamente de la dirección en la que se encuentra la brillante estrella Vega, en la constelación septentrional de Lyra. Sin embargo, incluso viajando a la vertiginosa velocidad de 95000 kilómetros/hora, le llevó tanto tiempo a este objeto interestelar hacer el viaje a nuestro Sistema Solar que Vega no estaba cerca de esa posición cuando el asteroide estaba allí, hace unos 300 000 años. Es probable que 'Oumuamua haya estado vagando a través de la Vía Láctea, independiente a cualquier sistema estelar, durante cientos de millones de años antes de su casual encuentro con el Sistema Solar.


Los astrónomos estiman que, una vez al año, un asteroide interestelar similar a 'Oumuamua pasa por el interior del Sistema Solar, pero son débiles y difíciles de detectar, por lo que no se han visto hasta ahora. Gracias a los nuevos telescopios de rastreo como Pan-STARRS, que son lo suficientemente potentes, ahora tenemos la oportunidad de descubrirlos.

“Seguimos observando este objeto único”, concluye Olivier Hainaut, “y esperamos precisar con más exactitud de dónde proviene y cuál será su próximo destino en su viaje por la galaxia. Y ahora que hemos encontrado la primera roca interestelar, ¡nos estamos preparando para las próximas!”.


Ilustración del asteroide interestelar 'Oumuamua. Image Credit: ESO/M. Kornmesser

sábado, 18 de noviembre de 2017

Descubren un Exoplaneta de la Masa de la Tierra Alrededor de Ross 128

15.11.17.- Un planeta templado, del tamaño de la Tierra, ha sido descubierto a tan solo once años luz del Sistema Solar. El equipo que ha realizado el descubrimiento ha utilizado un instrumento único en su clase, el cazador de planetas HARPS de ESO.

 El nuevo mundo se ha designado como Ross 128 b y ahora es el segundo planeta templado más cercano tras Próxima b. También es el planeta más cercano descubierto que orbita a una estrella enana roja inactiva, lo cual puede aumentar las probabilidades de que se trate de un planeta que, potencialmente, pudiera albergar vida. Ross 128 b será un blanco perfecto para el ELT (Extremely Large Telescope) de ESO, que será capaz de buscar biomarcadores en su atmósfera.


Un equipo que trabaja con el instrumento HARPS (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por velocidad radial) de ESO, instalado  en el Observatorio La Silla, en Chile, ha descubierto que, alrededor de la estrella enana roja Ross 128, orbita un exoplaneta de baja masa cada 9,9 días. Se espera que este mundo del tamaño de la Tierra sea templado, con una temperatura superficial que también podría ser similar a la de la Tierra. Ross 128 es la estrella cercana "más tranquila" que alberga a un exoplaneta templado de este tipo.

"Este descubrimiento se basa en más de una década de seguimiento intensivo con el instrumento HARPS, junto con reducción de datos y técnicas de análisis de última tecnología. Solo HARPS ha demostrado tanta precisión y, quince años después del inicio de sus operaciones, sigue siendo el mejor instrumento de velocidad radial", explica Nicola Astudillo-Defru (Observatorio de Ginebra, Universidad de Ginebra, Suiza) coautor del artículo científico que presenta el descubrimiento.


Pese a ser de las más comunes, las enanas rojas son uno de los tipos de estrella más frías y débiles del universo. Esto hace que sean muy buenos objetivos para la búsqueda de exoplanetas y por eso están siendo cada vez más estudiadas. De hecho, Xavier Bonfils (Instituto de Planetología y de Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Grenoble, Francia), que dirige el equipo, bautizó al programa de HARPS como  “El atajo a la felicidad”, ya que es más fácil detectar a los pequeños hermanos fríos de la Tierra alrededor de estas estrellas, en comparación con estrellas similares al sol.


Muchas estrellas enanas rojas, como Próxima Centauri, emiten llamaradas que, ocasionalmente, bañan de letal radiación ultravioleta y de rayos X a los planetas que las orbitan. Sin embargo, parece que Ross 128 es una estrella mucho más tranquila, de manera que sus planetas podrían ser la morada conocida más cercana para albergar vida.


Aunque actualmente está a once años luz de la Tierra, Ross 128 se mueve hacia nosotros y se espera que se convierta en nuestra vecina estelar más cercana en tan solo 79 000 años, un parpadeo en términos cósmicos. ¡Para entonces, Próxima b será destronado y Ross 128 b pasará a ser el exoplaneta más cercano a la Tierra!


Con los datos de HARPS, el equipo descubrió que Ross 128 b orbita 20 veces más cerca de su estrella que la distancia a la que la Tierra orbita del Sol. A pesar de la proximidad a su estrella, Ross 128 b recibe sólo 1,38 veces más radiación que la Tierra. Como resultado, se estima que la temperatura de equilibrio de Ross 128 b se encuentran entre -60 y 20° C, gracias a la naturaleza débil y fría de su pequeña estrella enana roja, que tiene poco más que la mitad de la temperatura superficial del Sol. Mientras que los científicos involucrados en este descubrimiento consideran que Ross 128 b parece ser un planeta templado, sigue habiendo incertidumbre en cuanto a si el planeta se encuentra dentro, fuera, o en el umbral de la zona habitable, donde puede existir agua líquida en la superficie de un planeta.


Actualmente los astrónomos están detectando cada vez más exoplanetas templados y, la próxima etapa, será estudiar con más detalle sus atmósferas, su composición y su química. Será de vital importancia la posible detección de la presencia de biomarcadores en las atmósferas de los exoplanetas más cercanos, incluyendo el oxígeno, un gran paso para el que el ELT (Extremely Large Telescope) de ESO estará preparado.

"Las nuevas instalaciones de ESO jugarán un papel crítico, primero, en el censo de planetas de masa parecida a la de la Tierra favorables para su caracterización. En particular, NIRPS, el brazo infrarrojo de HARPS, aumentará nuestra eficiencia en la observación de enanas rojas, que emiten la mayor parte de su radiación en el infrarrojo. Y luego, el ELT proporcionará la oportunidad de observar y caracterizar gran parte de estos planetas", concluye Xavier Bonfils.


Recreación artística muestra al planeta templado Ross 128 b, con su estrella enana roja anfitriona al fondo. Image Credit: ESO/M. Kornmesser

sábado, 11 de noviembre de 2017

Descubren Polvo Frío Alrededor de la Estrella más Cercana

05.11.17.- El Observatorio ALMA, en Chile, ha detectado polvo alrededor de Próxima Centauri, la estrella más cercana al Sistema Solar. Estas nuevas observaciones revelan el resplandor procedente de polvo frío en una región que se encuentra a una distancia de Próxima Centauri que supone entre una y cuatro veces la que separa a la Tierra del Sol. Los datos también insinúan la presencia de un cinturón de polvo externo incluso más frío que puede indicar la presencia de un complejo sistema planetario. 

Estas estructuras son similares a los cinturones mucho más grandes del Sistema Solar y también se espera que estén formadas por partículas de roca y hielo que no lograron formar planetas.


Próxima Centauri es la estrella más cercana al Sol. Es una débil enana roja que se encuentra a tan solo cuatro años luz, en la constelación meridional de Centaurus (el centauro). Es orbitada por Próxima b, un planeta templado del tamaño de la Tierra descubierto en el año 2016 que es, además, el planeta más cercano al Sistema Solar. Pero en este sistema hay algo más que un solo planeta. Nuevas observaciones de ALMA revelan la emisión de nubes de frío polvo cósmico que rodean a la estrella.


El autor principal del nuevo estudio, Guillem Anglada, del Instituto de Astrofísica de Andalucía (CSIC), Granada (España), explica la importancia de este hallazgo: "El polvo alrededor de Próxima es importante porque, tras el descubrimiento del planeta terrestre Próxima b, es el primer indicio de la presencia de un complejo sistema planetario (formado por más de un único planeta) alrededor de la estrella más cercana a nuestro Sol".


Los cinturones de polvo son los restos del material que no se incorporó a cuerpos de mayor tamaño, como pueden ser los planetas. Las partículas de roca y hielo en estos cinturones varían en tamaño: desde el más diminuto grano de polvo, más pequeño que un milímetro, hasta cuerpos tipo asteroide con muchos kilómetros de diámetro.


El polvo parece encontrarse en un cinturón que se extiende a unos pocos cientos de millones de kilómetros de Próxima Centauri y tiene una masa total de, aproximadamente, una centésima parte de la masa de la Tierra. Se estima que este cinturón tiene una temperatura de unos –230 grados centígrados, la misma que la del Cinturón de Kuiper en el Sistema Solar exterior.


También hay pistas, en los datos de ALMA, que apuntan a la presencia de otro posible cinturón de polvo incluso más frío unas diez veces más lejos. De confirmarse, la naturaleza de un cinturón exterior resultaría intrigante, dado su entorno muy frío lejos de una estrella que es más fría y más débil que el Sol. Ambos cinturones están mucho más lejos de Próxima Centauri que el planeta 
Próxima b, que orbita a sólo 4 millones de kilómetros de su estrella.


Guillem Anglada explica las implicaciones del descubrimiento: "Este resultado sugiere que Próxima Centauri puede tener un sistema múltiple del planetas con una rica historia de interacciones que dieron lugar a la formación de un cinturón de polvo. Estudios más profundos podrían proporcionar información para localizar la ubicación de planetas adicionales que todavía no han sido identificados".


El sistema planetario de Próxima Centauri también es especialmente interesante porque hay planes para una futura exploración directa del sistema con microsondas conectadas a velas impulsadas por láser (el proyecto Starshot). Conocer el entorno polvoriento que rodea a la estrella es esencial para la planificación de este tipo de misión.


El coautor Pedro Amado, desde el Instituto de Astrofísica de Andalucía, explica también que esta observación es sólo el comienzo: "Estos primeros resultados muestran que ALMA puede detectar estructuras de polvo en órbita alrededor de Próxima, y más observaciones nos darán más detalles del sistema planetario de esta estrella. Combinándolas con el estudio de discos protoplanetarios alrededor de estrellas jóvenes, podremos desvelar  muchos de los detalles de los procesos que condujeron a la formación de la Tierra y del Sistema Solar hace unos 4600 millones años. ¡Lo que estamos viendo ahora es sólo una pequeña parte de lo que está por venir!".



Esta ilustración muestra qué aspecto podrían tener los cinturones de polvo recién descubiertos alrededor de Próxima Centauri, la estrella más cercana al Sistema Solar. Image Credit: ESO/M. Kornmesser

sábado, 4 de noviembre de 2017

Un Pequeño Asteroide o Cometa nos Visita Desde más Allá del Sistema Solar

29.10.17.- Un asteroide pequeño recientemente descubierto, o quizá un cometa, cuyo origen parece estar fuera del Sistema Solar y que viene de algún lugar en nuestra galaxia, se acerca a nuestro planeta. Si se confirma, sería el primer “objeto interestelar’ en ser observado y confirmado por los astrónomos.


Este inusual objeto – por ahora llamado A/2017 U1 – tiene un diámetro de aproximadamente 400 metros y está moviéndose con rapidez. Los astrónomos están trabajando urgentemente para apuntar telescopios alrededor de todo mundo y en el espacio hacia este notable objeto. Una vez que se obtengan y analicen estos datos, los astrónomos pueden saber más sobre el origen y posiblemente la composición del objeto.


A/2017 U1 fue descubierto el 19 de Octubre gracias al telescopio Pan-STARRS 1 de la Universidad de Hawai, durante una búsqueda de objetos cercanos a la Tierra. Rob Weryk, investigador postdoctoral en el Instituto de Astronomía de la Universidad de Hawai (IfA), fue el primero en identificar el objeto en movimiento y enviarlo al Minor Planet Center. 

Posteriormente, Weryk buscó en el archivo de imágenes Pan-STARRS y descubrió que también estaba en imágenes tomadas la noche anterior, pero no fue identificado inicialmente por el procesamiento del objeto en movimiento.


Weryk inmediatamente se dio cuenta de que era un objeto inusual. “Su movimiento no podía ser explicado utilizando la órbita normal de un asteroide o cometa del Sistema Solar”, dijo. Weryk contactó con otro investigador, Marco Micheli, quien tuvo la misma realización utilizando sus propias imágenes de seguimiento tomadas por el telescopio de la Agencia Espacial Europea en Tenerife, en las Islas Canarias. Con los datos combinados todo tenía sentido. Weryk dijo: "Este objeto viene de fuera del Sistema Solar".

"Esta es la órbita más extrema que he visto", dijo Davide Farnocchia, científico del Centro de Estudios de Objetos Cercanos a la Tierra (CNEOS) de la NASA en el Laboratorio de Propulsión a Chorro de la agencia en Pasadena, California. "Va extremadamente rápido y en una trayectoria tal que podemos decir con confianza que este objeto está saliendo del sistema solar y no regresará".


El equipo de CNEOS trazó la trayectoria actual del objeto e incluso miró hacia su futuro. A/2017 U1 llegó desde la constelación de Lyra, navegando a través del espacio interestelar a una velocidad de 25.5 kilómetros por segundo.


El objeto se acercó a nuestro Sistema Solar casi directamente "por encima" de la eclíptica, el plano aproximado en el espacio donde los planetas y la mayoría de los asteroides orbitan alrededor del Sol, por lo que no tuvo ningún encuentro cercano con los ocho planetas principales durante su caída hacia el Sol. El 2 de Septiembre, el pequeño cuerpo cruzó bajo el plano de la eclíptica justo dentro de la órbita de Mercurio y luego hizo su aproximación más cercana al Sol el 9 de Septiembre. Atraído por la gravedad del Sol, el objeto dio un giro brusco bajo nuestro Sistema Solar, pasando bajo la órbita de la Tierra el 14 de Octubre a una distancia de aproximadamente 24 millones de kilómetros, aproximadamente 60 veces la distancia a la Luna. 

Ahora se ha disparado hacia arriba sobre el plano de los planetas y, viajando a 44 kilómetros por segundo con respecto al Sol, el objeto está acelerando hacia la constelación de Pegaso.  

"Hace tiempo que sospechábamos que estos objetos deberían existir, porque durante el proceso de formación de los planetas se debió expulsar mucho material de los sistemas planetarios. Lo más sorprendente es que nunca antes habíamos visto objetos interestelares pasar", dijo Karen Meech, astrónoma del IfA especializada en cuerpos pequeños y su conexión con la formación del Sistema Solar.


Al pequeño cuerpo se le ha asignado el nombre temporal de A/2017 U1 por el Minor Planet Center (MPC) en Cambridge, Massachusetts, donde se recogen todas las observaciones de los cuerpos pequeños de nuestro Sistema Solar, y ahora los que lo acaban de atravesar. El Director del MPC, Matt Holman, dijo: "Este tipo de descubrimiento demuestra el gran valor científico de las continuas prospecciones de campo amplio del cielo, junto con intensas observaciones de seguimiento, para encontrar cosas que de otro modo no sabríamos que existen".


Dado que este es el primer objeto de su tipo jamás descubierto, las reglas para nombrar este tipo de objeto deberán establecerse por la Unión Astronómica Internacional.

"Hemos estado esperando este día durante décadas", dijo el gerente de CNEOS, Paul Chodas. "Desde hace tiempo se ha teorizado que tales objetos existen, asteroides o cometas moviéndose entre las estrellas y ocasionalmente pasando por nuestro Sistema Solar, pero esta es la primera detección. 

Hasta ahora, todo indica que es probable que sea un objeto interestelar, pero más datos ayudarían a confirmarlo".

Un Pequeño Asteroide o Cometa nos Visita Desde más Allá del Sistema Solar


Esta animación muestra el camino de A/2017 U1, que es un asteroide, o tal vez un cometa, en su paso a través de nuestro sistema solar interno en Septiembre y Octubre de 2017. A partir del análisis de su movimiento, los científicos calculan que probablemente se originó fuera de nuestro Sistema Solar. Image Credit: NASA/JPL-Caltech

sábado, 28 de octubre de 2017

MAVEN Descubre que Marte Tiene una Cola Magnética Torcida

22.10.17.- Marte tiene una "cola" magnética invisible que se retuerce por la interacción con el viento solar, según una nueva investigación que usa datos de la misión MAVEN de la NASA.


La nave espacial MAVEN está en órbita alrededor de Marte, recabando datos sobre cómo el Planeta Rojo perdió gran parte de su atmósfera y agua, transformándose de un mundo con capacidad para sustentar la vida hace miles de millones de años a un lugar frío e inhóspito hoy en día. El proceso que crea la cola retorcida también podría permitir que parte de la ya débil atmósfera de Marte escape al espacio, según el equipo de investigación.


"Descubrimos que la cola magnética de Marte, o magnetocola, es única en el sistema solar", dijo Gina DiBraccio, del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. "No es como la que se encuentra en Venus, un planeta sin campo magnético propio, ni es como el de la Tierra, que está rodeado por su propio campo magnético generado internamente. En cambio, es un híbrido entre los dos". DiBraccio presentó sus hallazgos durante la 49ª reunión anual de la División de Ciencias Planetarias de la American Astronomical Society en Utah.


El equipo descubrió que un proceso llamado "reconexión magnética" debe tener un papel importante en la creación de la magnetocola marciana porque, si se produjera una reconexión, causaría el giro de la cola.


"Nuestro modelo predijo que la reconexión magnética hará que la magnetocola marciana gire 45 grados con respectoa lo esperado en función de la dirección del campo magnético transportado por el viento solar", dijo DiBraccio. "Cuando comparamos esas predicciones con los datos de MAVEN sobre las direcciones de los campos magnéticos de Marte y el viento solar, ambos coinciden".
Marte perdió su campo magnético global hace miles de millones de años y ahora solo tiene campos magnéticos "fósiles" incrustados en ciertas regiones de su superficie. De acuerdo con el nuevo trabajo, la magnetocola de Marte se forma cuando los campos magnéticos transportados por el viento solar se unen con los campos magnéticos incrustados en la superficie de Marte en un proceso llamado reconexión magnética. El viento solar es una corriente de gas eléctricamente conductor que sopla continuamente desde la superficie del Sol al espacio a aproximadamente a 1,6 millones de kilómetros por hora. Lleva consigo campos magnéticos del Sol. Si el campo del viento solar se orienta en la dirección opuesta a un campo en la superficie marciana, los dos campos se unen en una reconexión magnética.



El proceso de reconexión magnética también podría impulsar parte de la atmósfera de Marte al espacio. La atmósfera superior de Marte tiene partículas cargadas eléctricamente (iones). Los iones responden a las fuerzas eléctricas y magnéticas y fluyen a lo largo de las líneas del campo magnético. 

Dado que la magnetocola marciana se forma al unir los campos magnéticos de la superficie con los campos del viento solar, los iones en la atmósfera superior de Marte tienen una ruta al espacio si fluyen hacia abajo por la magnetocola. Al igual que una banda elástica estirada que de repente se ajusta a una nueva forma, la reconexión magnética también libera energía, lo que podría impulsar activamente los iones en la atmósfera marciana hacia el espacio.


Dado que Marte tiene un mosaico de campos magnéticos de superficie, los científicos habían sospechado que la magnetocola marciana sería un híbrido complejo entre el de un planeta sin campo magnético y el que se encuentra detrás de un planeta con un campo magnético global. Los amplios datos de MAVEN en el campo magnético marciano permitieron al equipo ser el primero en confirmarlo. La órbita de MAVEN cambia continuamente su orientación con respecto al Sol, permitiendo que se realicen mediciones que cubran todas las regiones que rodean Marte y construyendo un mapa de la magnetocola y su interacción con el viento solar.

"Marte es realmente complicado pero realmente interesante al mismo tiempo", dijo DiBraccio.


Concepción del artista del complejo entorno del campo magnético en Marte. Image Credit: Anil Rao/Univ. of Colorado/MAVEN/NASA GSFC